Model 5300

Mass Flow and Density Transmitter with FOUNDATION™ fieldbus

FOUNDATION FIELDBUS CAPABILITY

- Interoperable with other FOUNDATION™ fieldbus instruments
- Reduces wiring costs by 60% compared to traditional smart transmitters
- Reduces installation, commissioning, operation, and maintenance time by 30 to 60% compared to traditional smart transmitters

MULTIVARIABLE CAPABILITY PROVIDES MORE THAN JUST THE PROCESS VARIABLE

- Provides mass flow indication with no peripheral devices or additional calculations
- Also provides volume flow, density, and temperature measurements, all in real time
- Works with all Micro Motion sensors, including models designed for special processes such as high-pressure, high-temperature, and sanitary applications

SUPERIOR PERFORMANCE AND RELIABILITY

- Flow accuracy up to ±0.10% of flow rate, density accuracy to ±0.5 kg/m³, depending on Coriolis sensor model
- Easy-to-install intrinsically safe wiring
- IP65 (NEMA 4X) weathertight enclosure
- Agency approved for installation in UL, CSA, and CENELEC areas

PART OF THE PLANTWEB ARCHITECTURE

- Fieldbus Foundation certified function blocks compatible with other PlantWeb™ devices
- Detailed diagnostics include real-time indication of instrument status, which enables proactive instead of reactive process control

Micro Motion
FISHER-ROSEMOUNT™ Managing The Process Better.
Why Micro Motion?

Proven Leadership in the Development of New Technologies

Micro Motion Inc. is a member of Fisher-Rosemount, a unique family of companies committed to helping you improve business results by managing the process better.

Individually, each of these companies is a recognized leader in providing one or more of the capabilities needed for better process performance: measurement, analysis, control, and integration. Together, we offer a complete range of best-in-class products, systems, and services, and we offer the engineering expertise to make them all work together.

The Fisher-Rosemount group of companies has a long history of leading the industry with breakthrough technology. Fisher-Rosemount’s long-term presence in the process measurement and control marketplace provides in-depth knowledge of the process industries. This knowledge allows each company to constantly develop, improve, and refine emerging and mature technologies. The result: companies within the Fisher-Rosemount group are consistently ahead of the competition in the development of emerging technologies. Foundation fieldbus is no exception; products from Fisher-Rosemount were among the first to pass the Fieldbus Foundation’s interoperability test.

Advanced Implementation of FOUNDATION fieldbus Technology

Enhanced Measurement Features include industry-leading accuracy and stability to guarantee high-quality measurements, and advanced multiple-input features to enable multivariable measurement capabilities.

Advanced Diagnostics Capabilities reduce costly unscheduled process downtime by providing more detailed information about the health and status of the device and the process.

Breadth of Best-in-Class Products ensures the optimal solution for all of your measurement and control needs.

“Control Anywhere” yields consistent, uniform, and predictable control strategies regardless of whether you implement control in the transmitter, the valve, or the DeltaV Fieldbus configuration tool.

World-Class Service and Support

Doing business with Micro Motion provides you access to Fisher-Rosemount’s world-wide service and support network, Foundation Support for PlantWeb Builder. This network provides the essential services for implementation and your first year of operation. Our response center and certified customer support solutions specialists assure that your needs are handled efficiently and effectively regardless of which Fisher-Rosemount division manufactured your instrument, and where in the world you are using the instrument.

Fisher-Rosemount offers a broad range of services designed to keep your process up and running. The support network is staffed with highly trained and qualified technical and administrative professionals who will respond to your calls. Their support helps to achieve faster turnaround times on solutions, and enables your Fisher-Rosemount salesperson to dedicate more time assisting your company, before and after the installation.

The Breakthrough Technologies of FISHER-ROSEMOUNT

<table>
<thead>
<tr>
<th>Year</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>Solid-State Sensors</td>
</tr>
<tr>
<td>1984</td>
<td>Digital Valve Controllers</td>
</tr>
<tr>
<td>1984</td>
<td>HART, Fieldbus, OPC Standards</td>
</tr>
<tr>
<td>1984</td>
<td>Multivariable Transmitters</td>
</tr>
<tr>
<td>1984</td>
<td>Asset Management</td>
</tr>
<tr>
<td>2000+</td>
<td>PERFORMANCE Software</td>
</tr>
<tr>
<td>2000+</td>
<td>FOUNDATION fieldbus-Compliant Instruments</td>
</tr>
</tbody>
</table>

1984: Asset Management, PERFORMANCE Software
2000+: Foundation fieldbus-Compliant Instruments
Why FOUNDATION fieldbus?

Designed for Process Control by Process Control Experts

FOUNDATION fieldbus is an all digital, serial, two-way communication protocol that interconnects field equipment such as transmitters, valves, and controllers. Fieldbus is a Local Area Network (LAN) for instruments used in process control with built-in capability to distribute the control application across the network.

FOUNDATION fieldbus was designed from the ground up specifically for the process control industry by a group of process control experts. The technology is owned and maintained by the Fieldbus Foundation, a not-for-profit organization that consists of more than 100 of the world's leading control and instrumentation suppliers and end users.

Cost Savings

The savings begin with installation and wiring...

Fewer hardware components, a simplified wiring architecture, reduced need for I/O equipment, and the reduced central control requirements of a Fieldbus installation yield sizable labor and material savings compared to traditional (non-fieldbus) control strategies.

For a new installation you can connect up to 16 fieldbus transmitters to a single pair of wires. In an established installation you can use existing wiring to connect up to 16 transmitters per measurement loop. With a Fieldbus loop you can easily save 60% in installation costs alone.

...continue with easy commissioning...

To commission the instrument, simply enter the configuration parameters and download the data to all of the applicable devices. Instrument technicians will spend 30 to 60% less time commissioning Fieldbus instruments compared to traditional smart instruments.

...and end with simplified operation and maintenance.

FOUNDATION fieldbus enables greater access to the powerful diagnostics capabilities of the transmitters. These capabilities will help prevent costly unscheduled process downtime by enabling maintenance personnel to quickly identify and solve problems.

Advanced Functionality

Location-Independent Control

FOUNDATION fieldbus allows the implementation of PID control in the field device. Moving control closer to the process improves loop performance, reduces plant variability, and greatly reduces the necessary size of control rooms.

High Speed Communication

Loop execution speed is increased significantly through the regular scheduling of data transmission. Peer-to-peer communication improves the efficiency and reliability of the control system.

Flexible Topology

FOUNDATION fieldbus enables an extremely flexible topology, which is designed and optimized for process control. You can install Foundation fieldbus devices using a tree configuration, a multidrop configuration, or a combination of both.

Truly Interoperable

FOUNDATION fieldbus-compliant instruments from different vendors are interoperable, which allows you to select the best-in-class instruments for each application without having to consider compatibility issues.

True interoperability is achieved through the implementation of standardized function blocks and Device Description Language (DDL) technology. The implementation of standardized function blocks (such as Analog Input, Analog Output, and PID) enables integrated, real-time, deterministic control strategies. DDL technology ensures access to all available device features, and provides a mechanism to support upgrades to future digital enhancements.

FOUNDATION fieldbus is the only all-digital communication protocol that uses both of these technologies.
Micro Motion Coriolis flowmeters provide highly accurate and repeatable mass flow, volume flow, density and temperature measurement in a single measurement device with multivariable capability. Micro Motion meters improve process efficiency by significantly reduce process variation, improving quality and increasing production.

Accessing process and diagnostic information is simple and easy, because the Micro Motion Model 5300 transmitter is based on FOUNDATION fieldbus communications and features Fisher-Rosemount PlantWeb™ field-based architecture, a scaleable way to use open and interoperable devices and systems to build process solutions.

In addition to the benefits realized by accessing process and device information, the Model 5300 transmitter with FOUNDATION fieldbus also reduces costs associated with wiring, installation, commissioning, and maintenance — over the life of the product.

Micro Motion offers a broad range of flow and density measurement solutions. The Model 5300 transmitter can be used in combination with all Micro Motion sensors, including sensors designed for special applications such as low-flow, high-temperature, high-pressure, and sanitary processes. The Model 5300 transmitter includes:

- Four analog input function blocks for mass flow, volume flow, density, and temperature in units of measure selected by the user
- A view block for all diagnostics and other relevant transmitter and sensor information

The Model 5300 transmitter is FOUNDATION fieldbus certified for interoperability with other fieldbus devices.

Integrate the Model 5300 Transmitter into the PlantWeb™ Architecture for Superior Performance

PlantWeb is the architecture that uses the power of intelligent field devices to improve plant performance. Integrating the Model 5300 with Foundation fieldbus into the PlantWeb architecture yields the following advantages:

Coriolis Measurement

Working with a Micro Motion Coriolis sensor, the Model 5300 transmitter provides precision fluid measurement in a wide variety of fluid applications. Outputs include mass flow, density, temperature, and volumetric measurements, in units that can be selected by the user. The Model 5300 delivers real-time flow rate indication and on-line fluid density without the need for additional devices.

Diagnostics

Real-time indication of instrument status allows the user to closely monitor the process and operation of the transmitter and sensor. In many cases, diagnostic messages can be used to troubleshoot the system from the control room.

Fieldbus Foundation Registration Ensures Compatibility with FOUNDATION fieldbus Communication Protocol

The Fieldbus Foundation logo and the accompanying registration checkmark indicate that an instrument is registered with the Fieldbus Foundation, and is fully compatible with FOUNDATION fieldbus communication protocol. Instruments from Fisher-Rosemount were among the world’s first to pass the Fieldbus Foundation’s interoperability tests.

Instruments with the Fieldbus Foundation logo and the accompanying checkmark have passed a series of tests conducted by the Fieldbus Foundation at its independent laboratory, and are interoperable with other registered instruments regardless of manufacturer. The Fieldbus Foundation’s comprehensive interoperability test system, unlike tests of other control network protocols, assures end users of the ability to choose the best-in-class device for each measurement or control application without having to consider compatibility issues.

Fisher-Rosemount has the widest offering of best-in-class FOUNDATION fieldbus-compatible instruments in the world.
TRANSMITTER DESCRIPTION

Figure 1 illustrates how the Coriolis sensor signal is channeled through the Model 5300 to the control room and the FOUNDATION fieldbus configuration device.

The Model 5300 microprocessor-based transmitter with FOUNDATION fieldbus works with Micro Motion sensors to provide precise mass and volumetric flow measurement in a wide variety of fluid applications.

The transmitter is available integrally mounted to F-Series sensors to simplify and reduce the cost of flowmeter installation, and is also available with hardware for remote installation – up to 300 meters – for use with all Micro Motion sensors.

Inputs

The transmitter accepts input from one Coriolis sensor using Micro Motion color-coded cable. The Coriolis signal provides mass flow, volume flow, density, and temperature measurements. The sensor wiring is intrinsically safe.

FOUNDATION fieldbus Communication

The transmitter is registered with the Fieldbus Foundation, and conforms to the FOUNDATION fieldbus H1 protocol specification. FOUNDATION fieldbus wiring is intrinsically safe.

Electronics

The transmitter features all-digital ASIC and surface-mount technology. The electronics digitize the input signal from the Coriolis sensor and apply correction coefficients selected from nonvolatile memory.

Housing

The transmitter is housed in a IP65 (NEMA 4X) weathertight enclosure. The housing has a sensor wiring compartment for intrinsically safe sensor input wiring, and an increased safety field-wiring compartment for intrinsically safe output and non-intrinsically safe power-supply wiring. A separate explosion-proof compartment contains the transmitter electronics.

A mounting bracket is included with transmitters that are specified for remote mounting.
SOFTWARE FUNCTIONALITY
The Model 5300 software is designed to permit remote testing and configuration of the transmitter using the Fisher-Rosemount DeltaV™ Fieldbus Configuration Tool, or other FOUNDATION fieldbus compliant hosts.

Transducer Block
The transducer block holds the data from the Coriolis sensor. It includes information about the sensor type, sensor configuration, engineering units, calibration, damping, and diagnostics.

Resource Block
The resource block contains physical device information, including available memory, manufacturer identification, type of device, and features.

FOUNDATION fieldbus Function Blocks
The Analog Input (AI) function block processes the measurement and makes it available to other function blocks. It also allows filtering, alarming, and engineering unit change. The four Model 5300 AI blocks process mass flow, volume flow, density, and temperature signals from the Coriolis sensor.

Diagnostics and Service
The Model 5300 automatically performs continuous self diagnostics. Using the transducer block, the user can perform on-line testing of the transmitter and sensor. Diagnostics are event driven and do not require polling to access.

Detailed Setup
Detailed setup is used during the initial setup of a transmitter. It allows the flowmeter to be configured and, if necessary, calibrated. A FOUNDATION fieldbus host is required for setup.

Diagnostics and Service
The Model 5300 automatically performs continuous self diagnostics. Using the transducer block, the user can perform on-line testing of the transmitter and sensor. Diagnostics are event driven and do not require polling to access.

SPECIFICATIONS
Functional Specifications
Input
One intrinsically safe 9-wire Coriolis sensor signal input with ground.

Analog Input Function Blocks
Cycle time
Update rate 50 milliseconds
Refresh rate host dependent

Output
Manchester-encoded digital signal that conforms to IEC 1158-2. Can be configured to indicate mass flow, volume flow, density, and temperature.

Communication
FOUNDATION fieldbus H1

Low-Flow Cutoff
Flow rate below cutoff causes outputs to default to the level that indicates zero flow, and totalizer to stop counting.

Slug-Flow Inhibit
When the transmitter senses density outside user-selected limits, outputs default to levels indicating zero flow.

Damping
User-selected time constant from pre-programmed values. Can be applied to flow, density, temperature, or any combination.

Power Supply
Micro Motion flowmeters require external power to operate the Coriolis sensor. The transmitter fieldbus circuit is passive, and draws its power from the fieldbus segment.

85–250 VAC
47 to 64 Hz; 10 watts typical, 15 watts maximum. Fused at 250 V/630 mA. Meets low-voltage directive 73/23/EEC

20–30 VDC
6 watts normal, 14 watts maximum. Protected at 60 V/0.9 amp. Minimum startup voltage is 16 V at transmitter terminals. Maximum total resistance for wiring is 13 ohms. At startup, transmitter power source must provide a minimum of 0.7 amp of short-term current
Environmental Specifications

Ambient Temperature Limits
- Operating: –30 to 55°C
- Storage: –40 to 85°C

Process Fluid Temperature Limits

- **Integrally Mounted Transmitter**
 - –40 to 125°C
 - See graph below for ambient limits

- **Remotely Mounted Transmitter**
 - Refer to temperature limits for sensor
 - *Integral-mount available with R-Series and F-Series sensors.

Humidity Limits
- 5 to 95% non-condensing

Vibration Limits
- Meets IEC 68.2.6, endurance sweep, 10 to 2000 Hz, 50 sweep cycles

Environmental Effects

Model 5300 transmitters meet the requirements of the EMC directive 89/336/EEC per EN 50081-2 (January 1992) and EN 50082-2 (March 1995) when operated at nominal rated flow measurement range.

The requirements of NAMUR NE-21 (prepared by AK 4.6 EMC, May 1993) are met at the standard level(s). For specific EMC effects within the EC, the Technical EMC file may be reviewed at Micro Motion Veenendaal.

Model 5300 transmitters meet the recommendations of ANSI/IEEE C62.41 (1991) for surge and EFT.

To meet the above specifications, the transmitter must be installed with an approved Micro Motion sensor, and the sensor cable must be doubly shielded with full-contact glands, or installed in continuous, fully bonded metallic conduit. The transmitter and sensor must be directly connected to a low-impedance (less than 1 ohm) earth ground. Transmitter outputs must be standard twisted-pair, shielded instrument wire.

Recommended Process Temperature Limits for Integrally Mounted Model 5300 Transmitters
Performance Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ELITE(2)</td>
<td>liquid</td>
<td>±0.10% ± [(zero stability / flow rate) x 100]% of rate</td>
<td>±0.05% ± [(1/4)(zero stability / flow rate) x 100]x 100]% of rate</td>
</tr>
<tr>
<td>F-Series</td>
<td>liquid</td>
<td>±0.20% ± [(zero stability / flow rate) x 100]% of rate</td>
<td>±0.10% ± [(1/4)(zero stability / flow rate) x 100]x 100]% of rate</td>
</tr>
<tr>
<td></td>
<td>gas</td>
<td>±0.50% ± [(zero stability / flow rate) x 100]% of rate</td>
<td>±0.25% ± [(1/4)(zero stability / flow rate) x 100]x 100]% of rate</td>
</tr>
<tr>
<td>D (except DH38),</td>
<td>liquid</td>
<td>±0.15% ± [(zero stability / flow rate) x 100]% of rate</td>
<td>±0.05% ± [(1/4)(zero stability / flow rate) x 100]x 100]% of rate</td>
</tr>
<tr>
<td>DT, and DL</td>
<td>liquid</td>
<td>±0.65% ± [(zero stability / flow rate) x 100]% of rate</td>
<td>±0.30% ± [(1/4)(zero stability / flow rate) x 100]x 100]% of rate</td>
</tr>
<tr>
<td>DH38</td>
<td>liquid</td>
<td>±0.50% ± [(zero stability / flow rate) x 100]% of rate</td>
<td>±0.25% ± [(1/4)(zero stability / flow rate) x 100]x 100]% of rate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor Model</th>
<th>Density Accuracy</th>
<th>Density Repeatability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELITE (except high-</td>
<td>±0.5 kg/m³</td>
<td>±0.2 kg/m³</td>
</tr>
<tr>
<td>pressure CMF010P)</td>
<td>±2 kg/m³</td>
<td>±1 kg/m³</td>
</tr>
<tr>
<td>ELITE high-pressure</td>
<td>±2 kg/m³</td>
<td>±1 kg/m³</td>
</tr>
<tr>
<td>CMF010P</td>
<td>±8 kg/m³</td>
<td>±4 kg/m³</td>
</tr>
<tr>
<td>F-Series</td>
<td>±2 kg/m³</td>
<td>±1 kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6, D12, D25, D40,</td>
<td>±2 kg/m³</td>
<td>±1 kg/m³</td>
</tr>
<tr>
<td>DH100, DH150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH6, DH12, DH25, DH38</td>
<td>±4 kg/m³</td>
<td>±2 kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65, DL65, DT65,</td>
<td>±1 kg/m³</td>
<td>±0.5 kg/m³</td>
</tr>
<tr>
<td>D100, DT100, D150,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT150, DH300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL100, DL200, D300,</td>
<td>±0.5 kg/m³</td>
<td>±0.2 kg/m³</td>
</tr>
<tr>
<td>D600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor Model</th>
<th>Temperature Accuracy</th>
<th>Temperature Repeatability</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sensors</td>
<td>±1°C ± 0.5% of reading in °C</td>
<td>±0.02°C</td>
</tr>
</tbody>
</table>

(1) Flow accuracy includes the combined effects of repeatability, linearity, and hysteresis. All specifications for liquids are based on reference conditions of water at 20 to 25°C and 1 to 2 bar, unless otherwise noted.

(2) For ELITE sensors with Model 5300 transmitters, specified accuracy applies to nominal flow range only.

Hazardous Area Approvals
Approvals for the Micro Motion Coriolis sensor must match those for the transmitter.

UL
Class I, Division 2, Groups A, B, C, and D
Class II, Division 2, Groups F and G
CSA
Approval pending
CENELEC
EE x de [ia/ib] IIB/C T6
Physical Specifications

Mounting
Transmitters are available integrally mounted to F-Series sensors. Remote installation – up to 300 meters – is required for use with all other sensor models.

Conduit Connections
Two 3/4-14 NPT or M20 female conduit ports for power and output signal wiring. Remotely mounted transmitter has one additional 3/4-14 NPT female conduit for sensor cable.

Housing
IP65 (NEMA 4X) epoxy polyester painted cast aluminum. Physical dimensions are provided in Figure 2, below.

Electrical connections
Fixed screw terminals for all wiring connections. Screw terminal on housing for chassis ground.

Shipping Weight
5.7 kg

Dimensions in mm

![Dimensional Drawing for Remotely Mounted Transmitter](https://via.placeholder.com/150)

For minimum bend radii of cable, see cable or transmitter instruction manual. For integrally mounted sensor and transmitter, refer to product specifications for each F-Series sensor.

FIGURE 2. Dimensional Drawing for Remotely Mounted Transmitter
Model 5300 with FOUNDATION fieldbus

<table>
<thead>
<tr>
<th>Model</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5300</td>
<td>Model 5300 Transmitter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Mount Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Integral mount — sensor must be a F-Series model with mount code I</td>
</tr>
<tr>
<td>I</td>
<td>Integral mount — sensor must be a R-Series model with mount code I</td>
</tr>
<tr>
<td>R</td>
<td>Remote mount, 5 m Teflon®-insulated copper-shielded cable installed</td>
</tr>
<tr>
<td>L</td>
<td>Remote mount, 15 m Teflon-insulated copper-shielded cable installed</td>
</tr>
<tr>
<td>J</td>
<td>Remote mount, hardware only — cable specified separately, max. 300 m length; not factory installed</td>
</tr>
<tr>
<td>S</td>
<td>Remote mount, hardware with glands for shielded cable — cable specified separately, max. 300 m length; not factory installed</td>
</tr>
<tr>
<td>A</td>
<td>Remote mount, hardware with glands for armored cable — cable specified separately, max. 300 m length; not factory installed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>85 to 250 VAC</td>
</tr>
<tr>
<td>3</td>
<td>20 to 30 VDC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Intrinsically Safe Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>FOUNDATION fieldbus H1, with 4 Analog Input function blocks for mass, volume, density, and temperature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Conduit Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M20 conduit connections, no glands</td>
</tr>
<tr>
<td>2</td>
<td>M20 conduit connections, with 2 nickel-brass EExe (increased safety) glands</td>
</tr>
<tr>
<td>3</td>
<td>¾-inch NPT female conduit connections, no glands</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Hazardous Location Certifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Micro Motion standard — no approvals</td>
</tr>
<tr>
<td>U</td>
<td>UL Class 1, Div. 2, Groups A,B,C,D — U.S.A. approvals agency. Available only with conduit port code 3</td>
</tr>
<tr>
<td>Z</td>
<td>CENELEC Zone 1 — European approvals agency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Additional FOUNDATION fieldbus Function Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZZ</td>
<td>None</td>
</tr>
</tbody>
</table>

Typical Model Number 5300 R 6 F 3 U ZZZ
Visit us on the Internet at www.micromotion.com

Micro Motion Europe
Groeneveldselaan 6-8
3903 AZ Veenendaal
The Netherlands
Tel +31 (0) 318 549 549
Fax +31 (0) 318 549 559

Toll-free numbers (UK only)
Tel 0800-966 180
Fax 0800-966 181

Rest of Europe
Tel +31-318-549 443
Fax +31-318-549 449

Micro Motion, the Micro Motion logotype, ELITE, and F-Series are registered trademarks of Micro Motion Inc.
Rosemount and the Rosemount logotype are registered trademarks of Rosemount Inc.
PlantWeb, the PlantWeb logotype, and DeltaV are trademarks of Fisher-Rosemount.
FOUNDATION is a trademark of the Fieldbus Foundation.
Teflon is a registered trademark of E.I. Du Pont de Nemours Co. Inc.